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It is argued that approximate superselection rules induced by the environment 
cannot account for the emergence of definite measurement results in single 
experiments. The reason for this is that the inaccuracy necessary for an 
experiment failing to distinguish between exact and approximate mixtures 
requires the pointer observable to be strictly classical. This is shown in the case 
that the observables of physical systems generate W*-algebras. 

1. I N T R O D U C T I O N  

In the last two decades there has been a lively discussion in the 
literature on whether or not the pointer observable in a quantum measure- 
ment should be classical. 

The initial argument for the use of  a classical pointer observable is due 
to Hepp (1972): I f  the pointer observable is classical, then apparatus states 
corresponding to different pointer values are disjoint. A linear superposi- 
tion of disjoint states is always equivalent to an incorherent mixture of  such 
states. In a statistical interpretation, Lfiders' rule describes how the pure 
superposed state of  the apparatus is reduced to a mixture. I f  the pointer 
observable is classical, this is not necessary: the linear superposition and the 
incoherent mixture of  apparatus states with different pointer values are 
anyway equivalent. 

In an individual interpretation, this is not yet a satisfactory explana- 
tion for why we get a definite measurement result. The mixture of  appara-  
tus states with different pointer values in general does not admit an 
ignorance interpretation, because the decomposition into pure states is not 
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unique. However, if the pointer observable is classical, then the decomposi- 
tion of the mixed apparatus states into pure states is unique. This was 
shown for a pointer observable with discrete spectrum in Landsman (1991, 
Section 4.5) and Busch et al. (1991), Theorem 5.2.1. 

So it seems that two major obstacles to a solution of the measurement 
problem disappear if we have a classical pointer observable. But two other 
problems crop up: First, it has to be explained how classical observables 
arise in a (possibly infinite) quantum system. I will not deal with this 
problem here. 

Second, an automorphic time evolution of the joint system can in no 
finite time lead to the disjoint states corresponding to different pointer values. 
In the infinite-time limit, convergence to disjoint states can be achieved in 
the weak*-topology (Hepp, 1972), but not in the uniform topology (Bell, 
1975). Since one has to explain the occurrence of definite measurement results 
in a finite time, one has probably to accept that the time evolution of the 
joint system cannot be automorphic if the pointer observable is classical. This 
seems reasonable if the joint system is open. 

There have been several suggestions (for example, Zurek, 1982; Dieks, 
1989; Hannabus, 1984) that- - for  all practical purposes--the occurrence of 
definite results in single experiments can be explained by the influence of the 
environment alone, without assuming the pointer observable to be strictly 
classical. It is argued in Zurek (1982) that the environment induces a 
superselection rule in the following sense. The coupling of the apparatus to 
an environment reduces the initial superposition of eigenstates of the pointer 
observable quickly into a state which is almost a mixture. The coherence 
present in the superposed state is dislocalized into the many degrees of 
freedom of the environment. Thus the final state of the joint system is 
approximately diagonal in the pointer basis. In the modal interpretation of 
Dieks (1989), this final state leads to a definite measurement result in every 
single experiment. Our experiments of finite accuracy cannot distinguish 
between a true mixture (with vanishing terms off the diagonal) and a pure 
final state (with very small terms off the diagonal) which is approximately 
a mixture. Thus the correlations are unobservable (in inaccurate experi- 
ments), which is interpreted as having an approximate, environment-induced 
superselection rule. The superselection rule is not a strict one because there 
is not necessarily a superselection operator, i.e., a nontrivial operator 
commuting with all observables. 

In this paper I will argue against such a solution of the problem. The 
main line of the argument is: Only inaccurate experiments fail to distinguish 
between the true mixture and the approximate mixture. Generalizing a proof 
of Breuer (1992), I show that inaccurate experiments require the pointer 
observable to be strictly classical. Therefore the influence of the environment 
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cannot explain how quantum measurements work as long as it leads only 
to approximate superselection rules. 

2. INACCURATE EXPERIMENTS 

In this section I describe two ways in which experiments can be 
inaccurate and then abstract from the examples a notion of inaccuracy 
which I think fits most realistic experiments. 

First example: Consider the case where a digital point is used in a 
measurement of an observable A with continuous spectrum. After the 
experiment we register one number k as result, but say that the actual value 
of A might be in the interval [k - E, k + E]. There is a state ~'k in which A 
really has the value k. But all the states in which A has a value in 
[k - E, k + e] might as well have led us to register the result k. So there is 
an e-neighborhood of ~k leading to the same pointer reading. 

It may seem that this kind of inaccuracy is excluded if the value k is 
isolated by more than E from the other possible results, as, for example, in 
the measurement of the spin of a particle in a given direction z. Still-- 
and this is my second example--a Stern-Gerlach experiment can be 
inaccurate in the following way: The counter registers particles leaving a 
magnetic field whose direction might deviate by a small angle from z. 
Therefore these particles give rise to the same pointer reading as particles 
with spin exactly in z. Such a kind of inaccuracy was described in Primas 
(1990) by a finite partition of the Hilbert space on which the measured 
observable operates. 

Common to the two examples is the following notion of inaccuracy. 
There are some "typical" final states ~k in which the quantity we want to 
measure really has the value k. After an inaccurate experiment, however, all 
states in a sufficiently small E-neighborhood of some ~k give rise to the 
same pointer reading as ~k k. 

Let us try to formulate in a more general framework this notion of 
inaccuracy. Assume that the observables of the measured system and of the 
apparatus generate W*-algebras d z ,  d ~ ,  respectively. Let Pk be the pure 
state of the joint system after an experiment which leaves the system in the 
state Pk Is. (The states Pk ]s are what was called ~kk above.) One might be 
tempted to characterize the above inaccuracy by saying that there is a 
nonempty family {Pk }k~K of pure states of the joint system for which 

(30(Vp): I[;Is-pkl [t for some k =*,p(P) =pk(P)  

(Take , <  infi~ k IIPk- Pz 11/2 to avoid overlapping of the E-neighborhoods 
of the Pk.) This requirement would mean that if the norm-distance of p]s 
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to Pk Is is small enough, then the corresponding pointer readings should be 
the same. 

But states p of the joint system whose restriction pls to the observed 
system is close to Pk Is can be as far from Pk as states can be. So if we 
expected all such states to yield the same expectation value for the pointer 
obsevable, then the pointer observable would have to be constant. We can 
require something like the above only for states after the experiment. 

The measurement interaction couples the system states to certain 
apparatus states. So not all states p with I[Pis- Pk Is II < ~ are possible states 
of the joint system after the experiment. Let us assume that the coupling 
established by the measurement interaction is continuous: 

| Ilpl, - phi, 11 < lip - I1 < 

States p satisfying [IP[,- Pkl, l[ < e  but not lip -- Pk II < 6 do not have the 
relation between system and apparatus necessary for the inference of 
information about the system from information about the apparatus. 
Therefore they are not possible states after the experiment. This leads to 
the following requirement for an experiment to be inaccurate: There is an 
e such that for all pure states p of the joint system after the experiment we 
have ]]p[~ - Pk ]~ [[ < e ~ p(P) = pk(P). This definition of finite measure- 
ment accuracy in conjunction with continuity of coupling is equivalent to 
the following requirement. 

Finite measurement accuracy: There exists a nonempty family {Pk}k~K 
of pure states of the joint system (the "typical" final states) and a 6, 
0 < ~ < in f~k  [IPk -- Pi I]/2 such that the pointer observable P~Cs~ ~ ' ~  
has the same expectation value in all pure states p of the joint system 
satisfying lip - Pk I[ < 6 for some k. 

3. THE MAIN RESULT 

(A) Assuming that for all Z ~ ( ~ d s ~ @ ~ / ~ )  there is a Pk with 
pk(Z) v ~ O, an experiment can be of finite accuracy if and only if the pointer 
observable P is classical. 

(B) An experiment with pointer observable P can be of finite accuracy 
if and only if there is a classical observable/~ with pk(P) = pk(P), Vk~K. 
(Since the typical final states p~ cannot distinguish between P and/~, P and 
/~ give rise to the same pointer reading.) 

Proof o f  A: Denote by 7~pk(J~'~@d~, ) the GNS representation 
with respect to the state Pk of Jd~ (~ d ~  on the Hilbert space ~pk, where 
there is a cyclic vector f~,k such that pk(A)= (~pk[Trpk(A)[f~pk) for all 
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Step L (~k~xkernpk = {0}. Take A~Nk~Kkernok. First of all we 
observe that A cannot be in Y'.(~cse ~s~..~,): If A were in Y'(s~.~ Qsr 
then there would be a Pk with pk(A) ~ O. 

Now, ( ~ K  ker npk is a weakly closed two-sided ideal of SCs~ (~ d ~ .  It 
follows (see, e.g., Bratteli and Robinson, 1987, Theorem 2.4.22) that there 
is a projection Q ELY(~ds~ | ~(a) such that (']k~K ker rcp~ = Q ( ~  (~ ~r 
So ~k~,: ker npk ~ {0} would imply that ~k~K ker npk c~ ~(~r ~) ~r :~ {0}. 
But since there is no central element in Ok~K ker npk, Ok~K ker nok = {0}. 

Step 2. P (~s ~ ~t./) implies 

(Vf)(qk~K)(3p pure): !IP - Pk II < c5, p(P) r pk(e). 

P r 1 7 4 1 6 2  implies that there exists a B~s~cso | such that 
[P,B] #0 .  From the first step it follows that there is a k with 
n~([P,B]) 50 .  So np~(P)q~Y'(rco~(~r174162 Since p~ is pure, %~ is 
irreducible, so %~(P) cannot be constant. Take any vector state O e~p~ 
with 

Define 0~,= ef~s + (1 - cOO for 0 < e < 1. Take p~(A),=(r162 
for all A e~se |162 Now it can be checked that all p~ are pure states 
satisfying p~(P)r If we choose c~ close enough to one, then 

Step 3. P~f(dse ~d~, )  implies 

Take 6<inf, e~lfp,-pkll /2<2 and let p be a pure state with 
lip-p ll  < 2  for some k. A theorem by Glimm and Kadison (1960) 
shows that in this case the representations rc~ and r~p~ are unitarily equiva- 
lent. All classical observables have the same value in the states p and p~, so 
p(P) = p~(e). 

Proof of B. The family {pe}k~ defines a two-sided ideal 

d e ,= {A ]pK(B*AC) = O, VB, Ceds~ (~ d~,, Vk ~K} = N ker npk 
k e K  

There exists a projection Q ~LY(dse (~ ~r such that J = Q(~qls~ (~ d.a)Q. 
Now, ds~ (~ d.a can be written as 

ds, | = (1 - Q)(d  | d )(1 - Q) r Q(d,. | d )Q = , d ' r  

Since for every Z ' ~ ( d ' )  there is a Pk with pk(Z')#0,  we have 
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~ k ~  ker npk(d' + 0) = {0}. Every observable A eds~ (~ ~r can be writ- 
ten as A = A ' +  A", every state p on sr ~ d~a as p = p ' +  p". 

If there is a / ~ e ~ f ( d ~ o ~ d a )  with (VksK):pk(P)=pk(~P),  then 
P = P'  + _P", P = P '  + P". From the third step of the proof of (A) it 
follows that 

(36)(VkeK)(Vp'  pure states on d ' ) :  l ip ' -p 'k  [I < 6 ~ p'k(-P') = p'(P') 

Since [IP'-P~[[ < IlP-Pk[], all states p with lip -Pk l l  < 6  satisfy 
p(P' + O) = p'(P') = P'k(P') = pk(P" + 0). So the requirement of finite ac- 
curacy is satisfied for the pointer observable/~' + 0. 

If there is no P ~ ( ~ l ~ Q d ~ t )  with (VkeK): pk(P)=pk(P) ,  then 
P ' r  From the second step of the proof of (A) it follows that 
(VS)(~ksK)(3p'  pure states on ~ ' ) :  l iP ' -P~  II < 6  but p 'k(P ' )r  
Taking p :=p '+  p'~, it follows that lip -Ok ]] < 6, but p(P) ~ pk(P). 

4. CONCLUSION 

The main aim of this paper was to show that--contrary to sugges- 
tions in Zurek (1982) and Dieks (1989)--approximate superselection 
rules induced by the environment cannot explain why in single experi- 
ments we have a definite pointer reading. This can only be concluded if 
experiments are inaccurate, which in turn requires pointer observables to 
be strictly classical. 

But this does not mean that the environment does not have any role 
to play. On the contrary: it might explain why the joint system follows the 
nonautomorphic time evolution necessary to arrive in finite time at dis- 
joint final states. Furthermore, the coupling to an infinite-dimensional 
environment might provide a mechanism for the emergence of classical 
observables in an apparatus described by quantum theory. These interest- 
ing questions have not been dealt with in this paper. 
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